Comparative and Functional Genomics of Legionella Identified Eukaryotic Like Proteins as Key Players in Host–Pathogen Interactions
نویسندگان
چکیده
Although best known for its ability to cause severe pneumonia in people whose immune defenses are weakened, Legionella pneumophila and Legionella longbeachae are two species of a large genus of bacteria that are ubiquitous in nature, where they parasitize protozoa. Adaptation to the host environment and exploitation of host cell functions are critical for the success of these intracellular pathogens. The establishment and publication of the complete genome sequences of L. pneumophila and L. longbeachae isolates paved the way for major breakthroughs in understanding the biology of these organisms. In this review we present the knowledge gained from the analyses and comparison of the complete genome sequences of different L. pneumophila and L. longbeachae strains. Emphasis is given on putative virulence and Legionella life cycle related functions, such as the identification of an extended array of eukaryotic like proteins, many of which have been shown to modulate host cell functions to the pathogen's advantage. Surprisingly, many of the eukaryotic domain proteins identified in L. pneumophila as well as many substrates of the Dot/Icm type IV secretion system essential for intracellular replication are different between these two species, although they cause the same disease. Finally, evolutionary aspects regarding the eukaryotic like proteins in Legionella are discussed.
منابع مشابه
Adaptation of Legionella pneumophila to the host environment: role of protein secretion, effectors and eukaryotic-like proteins.
The intracellular pathogen Legionella pneumophila has evolved sophisticated mechanisms that enable it to subvert host functions, enter, survive and replicate in amoebae or alveolar macrophages, and to finally evade these hosts. Protozoa are essential for the growth of Legionella and the interaction with amoeba seems to be the driving force in the evolution of its pathogenicity. This is reflecte...
متن کاملPost-translational modifications are key players of the Legionella pneumophila infection strategy
Post-translational modifications (PTMs) are widely used by eukaryotes to control the enzymatic activity, localization or stability of their proteins. Traditionally, it was believed that the broad biochemical diversity of the PTMs is restricted to eukaryotic cells, which exploit it in extensive networks to fine-tune various and complex cellular functions. During the last decade, the advanced det...
متن کاملGenome dynamics in Legionella: the basis of versatility and adaptation to intracellular replication.
Legionella pneumophila is a bacterial pathogen present in aquatic environments that can cause a severe pneumonia called Legionnaires' disease. Soon after its recognition, it was shown that Legionella replicates inside amoeba, suggesting that bacteria replicating in environmental protozoa are able to exploit conserved signaling pathways in human phagocytic cells. Comparative, evolutionary, and f...
متن کاملInhibition of Host Vacuolar H+-ATPase Activity by a Legionella pneumophila Effector
Legionella pneumophila is an intracellular pathogen responsible for Legionnaires' disease. This bacterium uses the Dot/Icm type IV secretion system to inject a large number of bacterial proteins into host cells to facilitate the biogenesis of a phagosome permissive for its intracellular growth. Like many highly adapted intravacuolar pathogens, L. pneumophila is able to maintain a neutral pH in ...
متن کاملThe road less traveled: transport of Legionella to the endoplasmic reticulum
Phagosomes containing the bacterial pathogen Legionella pneumophila are transported to the ER after macrophage internalization. To modulate phagosome transport, Legionella use a specialized secretion system that injects bacterial proteins into eukaryotic cells. This review will focus on recent studies that have identified bacterial proteins and host processes that play a concerted role in trans...
متن کامل